Fast Cylinder and Plane Extraction from Depth Cameras for Visual Odometry
نویسندگان
چکیده
This paper presents CAPE, a method to extract planes and cylinder segments from organized point clouds, which processes 640×480 depth images on a single CPU core at an average of 300 Hz, by operating on a grid of planar cells. While, compared to state-of-the-art plane extraction, the latency of CAPE is more consistent and 4-10 times faster, depending on the scene, we also demonstrate empirically that applying CAPE to visual odometry can improve trajectory estimation on scenes made of cylindrical surfaces (e.g. tunnels), whereas using a plane extraction approach that is not curve-aware deteriorates performance on these scenes. To use these geometric primitives in visual odometry, we propose extending a probabilistic RGB-D odometry framework based on points, lines and planes to cylinder primitives. Following this framework, CAPE runs on fused depth maps and the parameters of cylinders are modelled probabilistically to account for uncertainty and weight accordingly the pose optimization residuals.
منابع مشابه
A real-time method for depth enhanced visual odometry
Visual odometry can be augmented by depth information such as provided by RGB-D cameras, or from lidars associated with cameras. However, such depth information can be limited by the sensors, leaving large areas in the visual images where depth is unavailable. Here, we propose a method to utilize the depth, even if sparsely available, in recovery of camera motion. In addition, the method utiliz...
متن کاملCombining Feature-Based and Direct Methods for Semi-dense Real-Time Stereo Visual Odometry
Visual motion estimation is challenging, due to high data rates, fast camera motions, featureless or repetitive environments, uneven lighting, and many other issues. In this work, we propose a twolayer approach for visual odometry with stereo cameras, which runs in real-time and combines feature-based matching with semi-dense direct image alignment. Our method initializes semi-dense depth estim...
متن کاملProbabilistic Combination of Noisy Points and Planes for RGB-D Odometry
This work proposes a visual odometry method that combines points and plane primitives, extracted from a noisy depth camera. Depth measurement uncertainty is modelled and propagated through the extraction of geometric primitives to the frame-to-frame motion estimation, where pose is optimized by weighting the residuals of 3D point and planes matches, according to their uncertainties. Results on ...
متن کاملInterpreting the structure of single images by learning from examples
One of the central problems in computer vision is the interpretation of the content of a single image. A particularly interesting example of this is the extraction of the underlying 3D structure apparent in an image, which is especially challenging due to the ambiguity introduced by having no depth information. Nevertheless, knowledge of the regular and predictable nature of the 3D world impose...
متن کاملMonocular Visual Odometry with a Rolling Shutter Camera
Rolling Shutter (RS) cameras have become popularized because of low-cost imaging capability. However, the RS cameras suffer from undesirable artifacts when the camera or the subject is moving, or illumination condition changes. For that reason, Monocular Visual Odometry (MVO) with RS cameras produces inaccurate ego-motion estimates. Previous works solve this RS distortion problem with motion pr...
متن کامل